Glauberman Correspondence of p-Blocks of Finite Groups
نویسندگان
چکیده
منابع مشابه
ON THE GLAUBERMAN AND WATANABE CORRESPONDENCES FOR BLOCKS OF FINITE p-SOLVABLE GROUPS
If G is a finite p-solvable group for some prime p, A a solvable subgroup of the automorphism group of G of order prime to |G| such that A stabilises a p-block b of G and acts trivially on a defect group P of b, then there is a Morita equivalence between the block b and its Watanabe correspondent w(b) of CG(A), given by a bimodule M with vertex ∆P and an endo-permutation module as source, which...
متن کاملDEFECT ZERO p−BLOCKS FOR FINITE SIMPLE GROUPS
We classify those finite simple groups whose Brauer graph (or decomposition matrix) has a p-block with defect 0, completing an investigation of many authors. The only finite simple groups whose defect zero p−blocks remained unclassified were the alternating groups An. Here we show that these all have a p-block with defect 0 for every prime p ≥ 5. This follows from proving the same result for ev...
متن کاملCohomology Algebras of Blocks of Finite Groups and Brauer Correspondence II
Let k be an algebraically closed field of characteristic p. We shall discuss the cohomology algebras of a block ideal B of the group algebra kG of a finite group G and a block ideal C of the block ideal of kH of a subgroup H of G which are in Brauer correspondence and have a common defect group, continuing [4]. We shall define a (B,C)-bimodule L. The k-dual L∗ induces the transfer map between t...
متن کاملFinite $p$-groups and centralizers of non-cyclic abelian subgroups
A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq Z(G)$. In this paper, we give a complete classification of finite $mathcal{CAC}$-$p$-groups.
متن کاملON p-NILPOTENCY OF FINITE GROUPS WITH SS-NORMAL SUBGROUPS
Abstract. A subgroup H of a group G is said to be SS-embedded in G if there exists a normal subgroup T of G such that HT is subnormal in G and H T H sG , where H sG is the maximal s- permutable subgroup of G contained in H. We say that a subgroup H is an SS-normal subgroup in G if there exists a normal subgroup T of G such that G = HT and H T H SS , where H SS is an SS-embedded subgroup of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2001
ISSN: 0021-8693
DOI: 10.1006/jabr.2001.8777